DiffInDScene: Diffusion-based High-Quality 3D Indoor Scene Generation

Supplementary Material

6. Video Demonstration

To gain a more comprehensive understanding of our method
for generating the indoor scene, we kindly invite you to
watch the attached video. The video demonstrates an ex-
ample of the coarse-to-fine generation process, and the the
post-processing of texturing using DreamSpace [51]. Fur-
thermore, to provide a more detailed and complete perspec-
tive on the inner scene structures, a random walk is con-
ducted within the generated scene.

7. Implementation Details
7.1. Dataset and Preprocessing

Indoor Scene Generation from Scratch. 3D-FRONT [11]
provides professionally designed layouts and a large num-
ber of rooms populated by high-quality 3D models. How-
ever, when organizing the mesh models to a complete scene,
the meshes may intersect with each other. Additionally,
most of them are not watertight meshes. These factors lead
to erroneous Truncated Signed Distance Function (TSDF)
volumes. In such cases, the meshes retrieved from TSDF
volumes contains lots of wrong connections. To address
this problem, we perform a solidification and voxel remesh-
ing on each scene mesh, using a pipeline of modifiers from
Blender with a voxel size of 0.02m. All meshes are saved
as triangular format. After the watertight meshes are ob-
tained, we derive the SDF volumes by using a open-source
software SDFGen [1], with a resolution of 0.04m. Then the
SDF volumes are truncated to TSDF by a maximum dis-
tance of 0.12m.

Refinement on the Reconstruction from Multi-view
Stereo(MVS). We use the official train / validation / test
split of ScanNet(v2) dataset, including 1201 / 312 / 100
scenes respectively. For there is no TSDF ground truth
provided in this dataset, we adopt a TSDF fusion method
like [19] to produce the ground truth as NeuralRecon does.
We only use TSDF data without any other data type such as
images in the whole training/testing process. To compare
the reconstruction results with pretrained NeuralRecon, the
grid size of TSDF volume is set to 0.04m, and the trunca-
tion distance is set to 0.12m. The default value of the TSDF
volume is 1.0.

In the training process, a random volume crop of 96 x
96 x 96 is used as data augmentation, where a random rota-
tion between [0, 27] and a random translation is performed
before cropping. To ensure that the sampling crop con-
tains sufficient occupied voxels, the translation is limited
in the bounding box of global occupied region, and the en-

tire cropped volume should be within the boundary of this
region.

7.2. Sparse Diffusion Model

Network Structure. TorchSparse [46] is used to imple-
ment the UNet structure of our network for noise prediction.
A group normalization(32 groups) and a SiLU activation
are used successively before any layer of sparse convolu-
tion. The network strctures used in difference stages of our
cascacded diffusion are shown in Fig. 9, where SparseRes
and Spatial Transformer are key components of our imple-
mentation as shown in Fig. 10.

Training & Inference Settings. The network parameters
are randomly initialized in training process, and we use the
Adam optimizer with a learning rate of 1.0 x 1074,

As for the diffusion framework, the DDIMScheduler
in the open-source diffusers [47] is developed as our code-
base. Following [6] and [38], we adopt the a—conditioning
to stabilize training, and enable the parameter tuning over
the noise schedule and the timesteps during inference stage.
More concretely, the cumulative product of a; namely &; is
used as a substitute of the timestep ¢ as time embedding in
most existing works. In Section 4.1, we use a cosine noise
schedule with 2000 timesteps during training, and the same
noise schedule is used with 200 time-steps during inference
within the DDIM framework. In Section 4.3, we use a linear
noise schedule of (1e — 6, 0.01) with 2000 timesteps during
training, and the same noise schedule is used with 100 time-
steps during inference within the DDIM framework. The
clip range for TSDF sampling is [—3.0, 3.0].

7.3. PatchVQGAN for Learning the Occupancy
Embedding

Network Structure. The network structure of PatchVQ-
GAN described in Section 3.3 is shown in Fig. 11. The
multi-scale encoding and decoding processes are slightly
coupled with each other, while we simplify the description
of the whole model for better understanding in Section 3.3.
The encoder and decoder are implemented hierarchically as
“”Encoder 17, ”Encoder 2”, ”"Decoder 17, and "Decoder 2”
as shown in Fig. 11 (b)-(e). The multi-layer feed-forward
discriminator is omitted here.

Different from [9], we use quantizers with Gumbel-
Softmax [20] which enables a differentiable discrete sam-
pling. The size of codebook is 8192, with the embedding
dimension of 4 as commonly adopted in [9][37].

Training & Inference Settings. The hyper parameters in
Eq. (11) are initially set to A\; = 1.0, Ay = 0.2. Addition-
ally, a dynamic weight adapting strategy as [9] is employed

Bx4x64x64x16
SparseConv3d 64, 3, 1

Sinusoidal
Timestep Embedding
Linear

o
o
i
g
@]
2
s
-9
%

Stage 2: Bx8x128x128x32
Stage 3: BX9x128%x128x128

N

e

- 3
o
3 3 -
= - - N - [}
1 1HEERHEE kR i
u S S 2 2 S S E g <
; G G = o b k=] <]
=3 a 9 X
B LR L |] L 1
X
E 3| | 5 2 = = & kS
E g 8 13 2 E] E
a a E o a
2] wn 5 12 12l
<
Z
g
E
=S
i
o
12l
(a) UNet structure in the Stage 1 of our cascaded diffusion.
@
o N
oM
X X
- o @
o 6D 5:14 ﬁ
2 & = X X
= D o @ ©
= &
: P o £ 2l £33
7] = 2 5] X X
: g 3 o g 2 g2l Ix
a vg’ e =S E D g o x
3 E E S‘ & IS
s g 2 % g
o S =
Qo =} a ©n

)

Sinusoidal
Timestep Embedding
Linear

|

(b) UNet structure in the Stage 2 and Stage 3 of our cascaded diffusion.

Figure 9. Noise prediction networks in our cascaded diffusion. In Stage 1, we use multiple Spatial Transformers as (a) shows. In Stage 2
and Stage 3, we use same network structure as (b), with only one attention layer in the middle of network.

Timestep Embedding 3D Positional Embedding

SparseConv3d C, 3, 1
SparseConv3d C, 3, |
SparseConv3d C, 1, 1

53
=
g
g
3
g
g
&

(a) SparseRes

(b) Spatial Transformer

Figure 10. Sparse units widely used in our implementation of
noise prediction network in sparse diffusion.

to control Ae. The network parameters are randomly ini-
tialized with normal distribution in training process, and we
use the Adam optimizer with a learning rate of 1.0 x 1075,

7.4. Local Fusion of Diffusion

The average fusion method mentioned in Section 3.4 is de-
fined as follows.
Average Fusion. Suppose zF(p)

~ N (ug (p), S (p)), we

have:

2(p) ~ N (e E(p), - ;
(14)

The rapidly decreasing variance impacts generation diver-
sity and quality. We, therefore, propose a stochastic TSDF
fusion algorithm.

7.5. User Study

We conduct two user studies on meshes from generation and
reconstruction refinement in Section 4.1 and 4.3, which are
slightly different.

Generation. We use same metric as Text2Room [17]:
Completeness and Perceptual. In every page of the survey,
the users scores one scene from one method by 1-5 points
on these 2 metrics. Then we take an average score on each
method.

Reconstruction Refinement. We employ more metrics
here, including details, completeness, plane quality, and

> Up b

@ Element-wise Multiplication
1(2)

z,
Bx4x12x12%x1

TSDF Volume
X, —>]
BX1x96X96x96

Encoder 1
Encoder 2

(Binary Occupancy Mask)

7@, z,
BXx4x24X24%2. s BXx1x96x96x96
BX1x96x96x96

(a) Encoding-Decoding pipeline of PatchVQGAN

(b) Encoder 1

) Decoder 1

) Encoder 2

) Decoder 2

Figure 11. Network structure of PatchVQGAN.

edge quality. To save the time of the users, we use rank-
ing rather than scoring for each scene. The feedback score
S; for the i-th scene is computed as

d;

!
z - dz

Jj=1

S 7"1,] (15)

where r; ; € 1,2,3,4 represents the ranking given by the
j-th user for the i-th scene. The function s(r) = 4 — r
converts the ranking into a score, with the r-th rank worth
4 —r score. d; is the total number of valid feedbacks for the
i-th scene. By summing up the scores across all scenes, we
obtain the total score

S§=) 5 (16)

8. More Results on Scene Generation

We provide more scene generation samples as shown in
Fig. 12 - Fig. 14.

Fig. 12 is an additional comparison between our method
and Text2Room [17]. Since the Poisson [21] reconstruction

can produce better results than pure Text2Room, we only
show the results of “Text2Room + Poisson”. Fig. 13 and
Fig. 14 are generated scene samples of our method.

Text2Room + Poisson Ours

Outer Look

Without Ceiling

Texture

Geometry

Texture

e O~ 5
- -

Figure 12. Comparison of Text2Room and our approach in larger views. As previous Fig. 5 shows, Poisson reconstruction significantly
improves the performance of pure TextRoom, so that here we only demonstrate the results of Text2Room [17] + Poisson [21]. The textures
of our results are produced by DreamSpace [51] as a post-processing of scene geometry generation.

4

Figure 13. More generation samples in columns.

5

Figure 14. More generation samples in columns.

